The new VIIRS (and Landsat-8) active fire detection algorithms

Wilfrid Schroeder

Department of Geographical Sciences

University of Maryland – College Park

Email: wschroed@umd.edu

Quick Update on MODIS C6

- Targeted improvements achieved with new algorithm
 - Fewer false alarms associated with tropical deforestation
 - Lower omission errors associated with large fires
- Re-processing under way
 - To be completed in a few months
 - C5 and C6 will co-exist until re-processing is complete, then C5 will phase out

Quick Update on MODIS C6

- Targeted improvements achieved with new algorithm
 - Fewer false alarms associated with tropical deforestation
 - Lower omission errors associated with large fires
- Re-processing under way
 - To be completed in a few months
 - C5 and C6 will co-exist until re-processing is complete, then C5 will phase out

The Visible Infrared Imaging Radiometer Suite (VIIRS)

- On board Suomi-NPP (launched Oct/2011)
 - 1:30am & 1:30pm local overpass
- 16 bands @ 750 m resolution (including dual-gain MIR with saturation temperature +600K)
- 5 bands @ 375 m resolution (including MIR though with frequent saturation)
- Second VIIRS to be launched onboard JPSS-1 in 2017
 - Expected to fly on same orbit as NPP trailing by 20-50min

VIIRS Heritage: MODIS and AVHRR

VIIRS			MODIS Equivalent			AVHRR-3 Equivalent			OLS Equivalent		
Band	Range (um)	HSR (m)	Band	Range	HSR	Band	Range	HSR	Band	Range	HSR
DNB	0.500 - 0.900								HRD PMT	0.580 - 0.910 0.510 - 0.860	550 2700
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000						
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000						
М3	0.478 - 0.498	750	3 10	0.459 - 0.479 0.483 - 0.493	500 1000						
M4	0.545 - 0.565	750	4 12	0.545 - 0.565 0.546 - 0.556	500 1000						
11	0.600 - 0.680	375	1	0.620 - 0.670	250	1	0.572 - 0.703	1100			
M5	0.662 - 0.682	750	13 14	0.662 - 0.672 0.673 - 0.683	1000 1000	1	0.572 - 0.703	1100			
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000						
12	0.846 - 0.885	375	2	0.841 - 0.876	250	2	0.720 - 1.000	1100			
M7	0.846 - 0.885	750	16	0.862 - 0.877	1000	2	0.720 - 1.000	1100			
M8	1.230 - 1.250	750	5	SAME	500						
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000						
13	1.580 - 1.640	375	6	1.628 - 1.652	500						
M10	1.580 - 1.640	750	6	1.628 - 1.652	500	3a	SAME	1100			
M11	2.225 - 2.275	750	7	2.105 - 2.155	500						
14	3.550 - 3.930	375	20	3.660 - 3.840	1000	3h	SAME	1100			
M12	3 660 - 3 840	750	20	SAME	1000	3b	3.550 - 3.930	1100			
M13	3.973 - 4.128	750	21 22 23	3.929 - 3.989 3.929 - 3.989 4.020 - 4.080	1000 1000 1000						
M14	8 400 - 8 700	/50	29	SAWE	1000						
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000	4	10.300 - 11.300	1100			
15	10.500 - 12.400	375	31 32	10.780 - 11.280 11.770 - 12.270	1000 1000	4 5	10.300 - 11.300 11.500 - 12.500	1100 1100	HRD	10.300 - 12.900	550
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000	5	11.500 - 12.500	1100			

Primary 750m MIR Channel Overlapping CO2 Absorption Band

Primary 750m MIR Channel Overlapping CO2 Absorption Band

MODTRAN Simulation Using Standard Atmospheric Profile

VIIRS × MODIS

Spatial Resolution

MODIS 1 km Global Coverage 2330 km Swath

Launched: Dec/1999 (Terra) and May/2002 (Aqua) Observation times (local): 10:30am/pm (Terra) 1:30pm/am (Aqua) Fire product features: detection and characterization (Fire Radiative Power)

VIIRS 750 m Global Coverage 3000 km Swath

Launched: Oct/2012 Observation times (local): 1:30pm/am Fire product features: detection and characterization (Fire Radiative Power)

VIIRS 375 m Global Coverage 3000 km Swath

Launched: Oct/2012 Observation times (local): 1:30pm/am Fire product features: detection

VIIRS Level 1 Data (swath)

VIIRS Resampled Data

The Visible Infrared Imaging Radiometer Suite (VIIRS)

NOAA (750m product)

- Operational data
- No re-processing capabilities (being considered)
- Based on MODIS C4
 - List of lat/lon coordinates
 - No fire mask
 - No FRP
- NOAA CLASS archive
- HDF5 ~5min segments
- MODIS C6 code being implemented in parallel processing system (NDE)

NASA (750m product)

- Science data
- Pre-processing capability in place
- Based on MODIS C6
 - Fire mask
 - FRP
- Land SIPS archive
- HDF4 ~5min segments
 - Transitioning to NetCDF

L _ _ _

NASA (375m product)

- Science/experimental data
- Builds on MODIS methodology
 - Fire mask
 - No FRP due to frequent saturation
- Being implemented at Land SIPS

Slowly progressing towards hybrid algorithm

NOAA (IDPS) NPP Active Fire Product history: data anomalies and product maturity (2/1)

N_{max}: maximum number of detections within a scanline

NOAA (IDPS) NPP Active Fire Product history: data anomalies and product maturity (2/2)

MODIS 1 km × VIIRS 750 m × VIIRS 375 m Fire Data Intercomparison

Taim Ecological Reserve, Southern Brazil (March 2013)

Improved Satellite Mapping of Active Fires Using VIIRS 375m Data

Aqua/MODIS 1km

MODIS-Aqua 1km

S-NPP/VIIRS 375m

GIS Mapping of 2013 Rim Fire/CA Using New VIIRS 375 m ≈12h Data

Daily Fire Growth Mapping of 2013 Rim Fire/CA Using New VIIRS 375 m and NIROPS (10 m airborne) Data

Assessment of VIIRS 375mactive fire detection product for direct burned area mapping

Independent Omission Error Independent Comission Error

Assessment of VIIRS 375mactive fire detection product for direct burned area mapping

Biome	Study area		Fires >0.9 ha				Fires >10 ha				
		N. of fires detected		Fire detection rate (%)	N. of fires detected		Fire detection rate (%)	Reference BA (%)			
		Reference dataset	VIIRS		Reference dataset	VIIRS					
Boreal forest	Canada	5	4	80.00	5	4	80.00	100			
	Russia	7	6	85.71	7	6	85.71	100			
Tropical grasslands and savannas	Brazil	129	25	19.38	56	14	25.00	99.41			
	Colombia	3094	596	19.26	892	389	43.60	98.13			
	South Africa	8239	1479	17.95	794	382	48.11	92.52			
	North Australia	505	242	47.92	136	109	80.15	99.25			
Agric. area	North India	70,648	5478	7.75	2637	760	28.82	67.00			
Mediterranean forest	Portugal	1568	766	48.85	298	241	80.87	97.06			
Temp. BL forest	SE Australia	13	8	61.54	13	8	61.54	100			
Trop. BL dry forest	Cambodia	41,681	10,757	25.81	1974	1285	65.09	71.46			

The New Landsat-8 30 m Active Fire Detection Data

<u>Pros</u>:

>150x more information per unit area than VIIRS 375 m >1000x more information per unit area than MODIS 1km

<u>Cons</u>:

Limited coverage (16 day-interval)

<u>Potential</u>:

Launch of other similar sensors could greatly increase data availability in the future (2-3 years) Near real-time data processing/distribution being explored

Community can/will have a major role defining the future of Landsat-class data applications

Data Validation

- Use of Landsat-class data to validate VIIRS is not an option due to prohibitively large time separation between same-day acquisitions
- Use of prescribed fires (easy/accessible)
- Coincident ground, airborne, spaceborne data acquisitions
- Community-organized (reduce spending, maximize output)

Data Validation

Experimenting new/inexpensive ways of collecting reference data in support of algorithm validation

- Use of relatively low-cost drones
- Use of relatively low-cost instrumentation

Hexacopter + FLIR camera (\$\$)

Dual-band radiometer (\$)

Experimental Fires in Kruger National Park/South Africa August 2014

Kruger National Park 19 August 2014 Lat: 25.131° S Lon: 31.411°W

> View from remotecontrolled helicopter

Kilometers

Subset of VIIRS 375 m pixel v grid (fire detection in red)

Surface-leaving FRP (VIIRS): 4.4±0.2MW @ 13:24:26 h local time

Landsat-8

0

Length of active (back) fire front at time of VIIRS overpass: 200 m

Small Fire Validation Landsat-8 and VIIRS 375 m example in Cachoeira Paulista/Brazil

Small Fire Validation Landsat-8 and VIIRS 375 m example in Cachoeira Paulista/Brazil

Lon: 44.984° W Lat: 22.686° S Landsat-8/OLI image at 10:58am local RGB 7-5-2 (30 m resolution)

Small Fire Validation Landsat-8 and VIIRS 375 m example in Cachoeira Paulista/Brazil

Small Fire Validation VIIRS 375 m nighttime example in Rio de Janeiro/Brazil

Subset of VIIRS L1B data o8 July 2013 4:23 UTC (1:23am local) Coinciding with <u>bonfire</u> <u>2.5 m</u> diameter experimental bonfire

Single pixel detection Pixel fraction containing active fire: 0.004%

<u>Very</u> Small Fire Validation Landsat-8 nighttime example in Greenbelt/USA

04 April 2015 10:56pm local

FLIR camera and dual-band radiometer mounted to 5 m telescoping tower overlooking grill fire

Effective area (combined): 0.5 m²

Lon: 76.870° W Lat: 39.009° N

<u>Very</u> Small Fire Validation Landsat-8 nighttime example in Greenbelt/USA

• Fire radiative power output at overpass time (using IR camera data):

0.01 MW

• Simulated channel 7 fire radiance (using IR camera data):

o.453 W/m².sr.µm

- Surface-equivalent (no atmosphere)
- Assuming rectangular spatial response function
- Actual channel 7 top-of-atmosphere pixel radiance:

0.229 W/m².sr.μm

• Single fixed threshold proposed for nighttime fire algorithm:

1W/m².sr.µm

Algorithm failed to detect fire!

VIIRS 750 m FRP evaluation using Coincident DRL TET-1

Comparison of FRP retrievals of gas flares in the Middle East on May 9, 12, 15, 18, 24 2015

TET-1: Technology Experiment Carrier-1by German Aerospace Agency DRL; dedicated 356m unsaturated measurements for hotspot characterization

VIIRS 750 m FRP evaluation using Coincident Aqua/MODIS data

MODIS/VIIRS gridded data (o.5 degree) of near-coincident fires (<1km from each other) over different parts of the globe including atmospheric correction of both data sets.

Conclusions

- New satellite active fire products enabling improved detection of small fires, refined mapping of large fires
- Evolving from fire pixels to fire events (fire pixel clusters)
- Improved fire line delineation supporting landscape analyses
- VIIRS 375m shows potential for first-order assessment of fire-affected area during large events
- Use of spatially refined data could support tactical fire management
- Algorithms being transitioned into operations
- Seeding of burned area products being pursued (new VIIRS burned area product)
- Algorithm refinement/improvement underway

Supplementary Information:

Wilfrid Schroeder @ UMD: http://geog.umd.edu/facultyprofile/Schroeder/Wilfrid S-NPP/VIIRS active fire data: http://viirsfire.geog.umd.edu/map/index.html Near real-time global VIIRS 375 m fire detection data: ftp://blaze.umd.edu/VIIRS375/NRT/ USDA Forest Service satellite fire mapping: http://activefiremaps.fs.fed.us/

http://viirsfire.geog.umd.edu/

VIIRS Active Fire

Home About

VIIRS AF Products

FAQ

VIIRS vs MODIS Maps & Data

Northwestern fire activity: August 13th, 2015

Fire activity shows no slowing down in the western states and this is reflected in the true-color image captured by VIIRS yesterday (August 13th) at 1:15pm, local time. In fact, the National Interagency Fire Center (NIFC) in Boise, Idaho, announced yesterday morning that the National Fire Preparedness Level would be increased to 5, the highest level and not seen since 2013. The M-band image (bands 5-4-3) and fire detections shows the many active fires and smoke emissions in the northwest. The most active, currently, include the Cougar (lowerleft), Wolverine (center-left), Soda (lower-right), and the North Boulder 2.

About

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor was launched aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on October 28th, 2011 and on January 18th, 2012 cooler doors for the thermal sensor were opened. Within hours data were being retrieved and fire detections produced. The 5 minute swath quicklooks presented here highlight recent fire detections superimposed on RGB images (bands 5-4-3).

000000

Active Fire Team Ivan Csiszar Chris Justice Louis Giglio Evan Ellicott Wilfrid Schroeder Krishna Vadrevu Antonio Sanchez Links **JPSS** VIIRS University of Maryland NOAA NOAA-STAR USFS RSAC **GOFC** Fire

Read more